EreduLh MESULUL <UUULUUNUL

SQuuuinjwu Shgpwu Ywhwqtp

Qwinfuwhubp hwdwwywwmwupiwtbgunn wpunwwywwnlbpnufubph hwynuwpbpdw
fjuinph yhéwlugpulwt b hwaynnulwl pwpnnipyniup

U.01.05 «Lwywuwlwunyeniuubpph nbunyeniu b dwebdwnhlulwu

ypbwlwagpnipnitu» dwutwghunipjuwdp Shghluwdwpbdwnhlulywu
ghwnipyniuubiph pEluwdnih ghunwlywu wunmhdwuh hwjgdwu wnblwlununyejwu

usuughr

Eplwu - 2023

YEREVAN STATE UNIVERSITY

Tigran Galstyan

Statistical and Computational Complexity of the Feature Matching

Map Detection Problem

SYNOPSIS

of dissertation for the degree of candidate of physical and mathematical sciences specializing

in A.01.05 - "Probability theory and mathematical statistics”

Yerevan - 2023



2023 . 26- , . 1500 -
- 050 ' 0025,

2023 14-

Dissertation topic was approved at Russian-Armenian University.

Supervisor: Doctor of phys-math sciences V.K. Ohanyan
Official opponents: Doctor of phys-math sciences Mohamed Hebiri
Candidate of phys-math sciences Vahan Huroyan

Leading organization: Institute of Mathematics of NAS RA

Defense of the thesis will be held at the meeting of the specialized council 050 of SCC
(Supreme Certifying Committee) of Armenia at Yerevan State University on December 26,
2023 at150 (0025, Yerevan, A. Manoogian str. 1).

You can get acquainted with the thesis in the library of the YSU.

Synopsis was sent on November 14, 2023.

Scientific secretary of specialized council, K.L. Avetisyan



General characteristics of the work

Relevance of the theme.

The problem of finding the optimal matching between two point clouds has been extensively
investigated both theoretically and experimentally, due to its relevance in various applications,
such as computer vision and natural language processing. For instance, in computer vision,
matching local descriptors extracted from two images of the same scene is a well-known exam-
ple of a matching problem, while in natural language processing, the correspondence between
vector representations of the same text in different languages is another example.

Permutation estimation and related problems have been recently investigated in different
contexts such as statistical seriation [10, 12, 4], noisy sorting [22], regression with shuffled data
[25, 29], isotonic regression and matrices [21, 24, 19], crowd labeling [28], recovery of general
discrete structure [11], and multitarget tracking [7, 18].

Feature matching is a problem that has received significant attention in the field of com-
puter vision. One of the main directions aims to accelerate matching algorithms using fast
approximate methods, as demonstrated in recent studies [20, 33, 13, 16]). Another direction
is to improve the matching quality by improving the quality of descriptors of image keypoints
[27, 6, 5]. Also, the better choice of keypoints is studied in [31, 1].

Measuring the quality of statistical procedures in hypothesis testing relies on the use of
separation rates, as highlighted in seminal works such as [3, 14, 15]. Recently, the practice
of using separation rates has been adopted in the field of machine learning, as evidenced by
[36, 35, 2, 26, 34, 8]. While traditionally used in the context of two hypotheses, this approach
is also applicable to multiple testing frameworks, including variable selection [23, 9], and the
matching problem being considered in this work.

In the field of single-cell biology research, it is common to collect datasets using similar
measurement protocols or experimental conditions but from different batches. When analyzing
such datasets, matching similar cells across different batches is a crucial step in correcting

technical variations and batch effects [32]. Another common practice is integrating datasets that



have overlapping biological information, such as transcriptomic and proteomic data, obtained
from different tissues, species, profiling technologies, or experimental conditions [30, 17].
This integration requires identifying and aligning cells in comparable states across related
datasets. Additionally, matching datasets with complementary biological information, such as
spatial information of individual cells within a tissue, with non-spatial single-cell datasets can
transfer valuable information to different measurement modalities [37].

It is evident that in the matching problems mentioned above, not all the points in a dataset
have their corresponding matching points in another dataset. It is challenging to predict the
exact number of points that will have a match in advance. One of the primary objectives of
the current research is to investigate this scenario and develop a comprehensive theoretical

understanding of the statistical constraints associated with the matching problem.

The aim of the thesis:

1. Design estimators for matching map detection problem that have an expected error
smaller than a prescribed level o under the weakest possible conditions on the nuisance

parameter 8* and noise level o*.
2. Find the detection boundary in terms of the order of magnitude of (Rin-in, Fin-out) (4)-

3. Introduce a data-driven procedure for estimating the number of inliers for any instance

of the matching map detection problem with outliers present in both datasets.

4. Formulate the resulting optimization problem as a graph minimum-cost flow problem and

show that it can be solved computationally efficiently.

5. Show that, in the high-dimensional setting, if the signal-to-noise ratio is larger than

5(dlog(4nm/a))*/*, then the true matching map can be recovered with probability 1 —cv.
6. Show that, in the presence of outliers, separation rate for LSL (3) is minimax optimal.

7. Experimentally show that our data-driven procedure for detecting the feature match-
ing map with no additional information before matching achieve similar results to more

classical algorithms which were given the true number of inliers as an input.



8. lllustrate achieved results and computational feasibility of proposed algorithms on syn-

thetic and real-world data.

The methods of investigation.

In this thesis we apply methods and techniques obtained on the basis of high-dimensional
statistics, probabilistic inequalities, linear programming and related topics. Previous related

results also served as a basis of this work.

Scientific innovation.

All results are new and are published in local and international conferences and journals.

Practical and theoretical value.

The results of the work both have theoretical and practical character. The theoretical results are
devoted to finding and proving detection boundries of various estimators in different settings of
the matching map detection problem. Algorithms studied and proposed in this work have been
experimentally proven to work on real-world datasets across various domains (i. e. computer

vision, bioinformatics).

Approbation of the results.

The presented results were presented in the scientific seminar at Russian-Armenian University.
Some of obtained results were presented in local and international conferences.

Publications.

The main results of this thesis have been published in 3 scientific articles in journals and 1

article in conference. The list of the articles is given at the end of the Synopsis.



The structure and the volume of the thesis.

The thesis consists of introduction, 3 chapters of main results followed by conclusion and
discussion, a list of references and () appendices. The number of references is (). The volume

of the thesis is () pages. The thesis contains () figures and () tables.

The main results of the thesis

Chapter 1.

First chapter introduces the problem of matching map recovery. In this chapter we formalize
the problem, discuss its variations and challenges associated with each problem setting. We
also discuss the most simple problem setting already studied in existing literature.

Put formally, this simplest setting goes as follows. We study the problem of matching two
sets of equal size n > 2, (X1,...,Xy») and (X¥,..., X}?). We assume that observed feature

vectors are randomly generated from the following model:

X =0 +0:&
i=1,....m (1)
Xt =0f +atel,
In this model it is assumed that
e 8= (A1,...,6,) and 8% = (9%,...,6%) are two sequences of vectors from R¢, corre-

sponding to the original features, which are unavailable,

e o=1(01,...,00)",0* = (o%,... %) 7 are positive real numbers corresponding to the
maghnitudes of the noise contaminating each feature,

o £, 6 and &, ... &* are two independent sequences of i.i.d. random vectors drawn
from the Gaussian distribution with zero mean and identity covariance matrix,

« there exists a bijective mapping 7* : [n] — [n] such that 6; = 9:*(1‘) for all ¢ € [n].

The ultimate goal is to detect the feature matching map 7*.
In chapter 1 we also discuss previous related results which served as a foundation for this

work.



Xi X2 Xs Xa Xs Xe X7

Figure 1: lllustration of the considered framework described in (1). We wish to match a set of 7
patches extracted from the first image to the 9 patches from the second image. The picture on

the left shows the locations of patches as well as the true matching map n* (the yellow lines).
Chapter 2.

Chapter 2 discusses in more detail the setting of matching map detection problem in presence
of outliers only in one of the sets and our results achieved in this problem setting.

Formally, in this chapter we discuss the problem of matching vectors from two sets
(Xi,... ,Xn) and (X#,... ,xm) with different sizes n and m such that m > n > 2. We

assume that vectors are randomly generated from the following model:

Xi= O+ Gifi ,
xi &+ &%,

In this model all assumptions from (1) hold, the only exception being that here, instead of

i= 1,...,nandj = 1,... ,m. (@)

a bijective mapping n* our goal is to find an injective mapping n* : [n] A~ [m], such that
ci= O*@)>»ieM.

Figure 1illustrates the aforementioned problem setting on image matching application using
local descriptors.

The LSL optimizer, one of the main estimators studied in this chapter is defined as follows:

= argmin log |[IXi - X~ ]2, (3)
nNA~AM Q=i



Our aim is to develop estimators that can achieve an expected error smaller than a spec-
ified threshold «, while imposing minimal restrictions on the nuisance parameter 8* and the
noise level a*. When dealing with features that are difficult to differentiate, the problem of
matching becomes more challenging. To quantify this phenomenon, we introduce two met-
rics - the normalized separation distance Rinin = Rinin (8%, 0%, 7*) and the normalized outlier
separation distance Rinout = Rinout(8%, 0", 7). These metrics measure the ratio of the min-
imal distance-to-noise between inliers and the minimal distance-to-noise between inliers and

outliers, respectively. The specific definitions of these metrics are as follows:

197 — 631l o7 — &3

0,70+, (072 + U§2)1/2’ i@0,, (072 +a§2)1/2 )
j#i FEO,

in-out — (4)

Rinin =

where O« £ [m] \ Im(7*) is the set of indices of outliers. One main result achieved in

homoscedastic case, i. e. 0; = afr*(i)Vi € S, is formulated below.

Theorem 1 (Upper bound for LSL). Let oo € (0,1/2). If the separation distances Ri,., and

Rinout corresponding to (8% o* 1) and defined by (4) satisfy

min{‘%infina Rin—out} > \/ﬁ + 4{ (2d |Og(4nm))1/4 \Vi (3 |Og( Snm)l/z} (5)

[e) [e)
then the LSL estimator (3) detects the matching map ©* with probability at least 1 — «, that is

Por ot pr (o = 7') > 1 — . (6)
Experiments on synthetically generated and real-world data are presented to illustrate the-

oretical findings.

Chapter 3.

In this chapter, we discuss the results achieved for the variation of the matching map detection
problem, where both feature vector sets can contain outliers. Formally, we assume that for
some S* C [n] of cardinality k*, there exists an injective mapping 7" : S* — [m] such that

0; = 9:*(1‘) holds for all 2 € 5*. We call the observations (X; : ¢ € §*) and (Xfr*(i) 1€ SY)
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Figure 2: Matching as a Minimum Cost Flow (MCF) problem. The idea is to augment the graph
with two nodes, source and sink, and n + m edges. The capacities of orange edges should be
set to 1, while the cost should be set to 0. Setting the total flow sent through the graph to k,

the solution of the MCF becomes a matching of size k.

inliers, while the other vectors from the sets X and X * are considered to be outliers. The
goal here again is to recover n* based on the observations X and X* only.

In this section, we introduce a novel procedure to estimate the number of inliers for cases
where both sets contain an unknown number of outliers. Our findings indicate that in the
high-dimensional setting, the true matching map can be retrieved with a probability of 1 —
a if the signal-to-noise ratio surpasses a threshold of 5(d log(4nm/a))1/4. It is noteworthy
that this threshold remains constant and is independent of k* (the true number of inliers).
Our data-driven selection process among candidate mappings nk : k e [min(n, m)] yielded the
aforementioned outcome. Each nk minimizes the sum of the squared distances between two
sets of size k. The resulting optimization problem can be expressed as a minimum-cost flow
problem, thereby enabling efficient resolution. The illustration of the reformulation of the

problem as a minimum-cost flow problem is shown on 2. To explain our result, let us introduce



Cell type removed from Celseq \ Smartseq Cell type removed from Celseq \ Smartseq

Figure 3: The study compares an algorithm that is unaware of the number of inliers (MinCost-

Flow estimated k) with algorithms that have the correct number of inliers as input.

the following quantities:

Ki,j = Wi - 0j ||Z(a2+ a*2)1/2, @

Kan= min_. min .mj 8

tetnj efmivn* () ®

Xn,md,a =4{(d log( ~ ))4v 8log( ~ ))1} 9)

Here Kan is the signal-to-noise ratio of the difference Xi - Xj of a pair of feature vectors.

Clearly, for matching pairs, this difference vanishes. Furthermore, if Ki,j vanishes or is very
small for a non-matching pair, then there is an identifiability issue and consistent recovery of
underlying true matching is impossible. Therefore, a natural condition for making consistent
recovery possible is to assume that the quantity is bounded away from zero.

In order to be able to recover S* and the matching map n*, the key ingredient we use is
the maximization of the profile likelihood. This corresponds to looking for the least sum of
squares (LSS) of errors over all possible injective mappings defined on a subset of [n] of size

k. Formally, if we define

S ¢ [n]\S]= Kk,
Pk:= n:S [m]such that (10)

n is injective

to be the set of all k-matching maps, we can define the procedure k-LSS as a solution to the

10



optimization problem
R €argmin y |1 X: — X7 I3, (1)
T<Pr ies,
where S, denotes the support of function 7.

Let ®(k) be the error of 7S, that is

— mi vt 2
b(k) = min 371X - X3 (12)

For some values of tuning parameters A > 0 and v > 0, as well as for some k.,;, € [n], initialize

k < ki, and
1. Compute ®(k) and ®(k + 1).
2. Set 57 = &(k)/(kd).

3. fk=nor®(k+1)— dk) > 257,

-

[

then output (k, &1, A5>>).

4. Otherwise, increase k < k + 1 and go to Step 1.

LSS

£ ) the output of this procedure. Notice that we start

In the sequel, we denote by (k,&;,#
with the value of k = ki, which in the absence of any information on the number of inliers
might be set to k = 1. However, using a higher value of ki, might considerably speed up the
procedure and improve its quality.

For appropriately chosen values of v and X, as stated in the next theorem, the described

procedure outputs the correct values of k" and 7" with high probability.

Theorem 2. Let o € (0,1) and Xy, n 4.« be defined by (7). If Ry > (%)An,m,d,a, then the
output (k, 7% of the model selection algorithm with parameters A = (1)A\2 | v = 3

satisfies P(75 = 7*) > 1 — o
Finally, at the end of this chapter, we report the results of our numerical experiments on

synthetic and real-world data that serve to illustrate our theoretical findings and offer further

insight into the properties of the algorithms studied in this work.
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Chapter 4.

Chapter 4 presents studies of the efficacy of recently developed, state-of-the-art entity resolu-
tion methods on real-life biomedical datasets. We explore various scenarios for the matching
problem, including those without outliers, those with outliers in only one dataset, and those
with outliers in both datasets. Subsequently, we conduct an extensive analysis and prepro-
cessing of the biomedical dataset pairs used in our experiments. Our results demonstrate that
modern algorithms consistently outperform the original greedy algorithm across all settings.
Moreover, we investigate previously proposed procedure that estimates the unknown number
of inliers without any supplementary information. We successfully show that algorithms utiliz-
ing this estimation technique perform almost as well as those that are provided with the actual
number of inliers as input. Figure 3 illustrates some of the results achieved in case of unknown
number of inliers, where our proposed algorithm performs as good, if not better, than classi-
cal algorithms serving as an oracle baseline, meaning they have additional information of real

number of inliers.
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uuenenhy
Shgpwt Ywhwquh SGwjuwnjw

Qwwnwupzubp hwiwwywwmwuppwubgunn wpnmwwwwmybpnufubph
hwynuwpbpdwt fuunph ypbwugpulwu b hwoynnujw
pwpnnipntup

Uwnbuwfununteyniunid uinwgyb Gu hGunlyw| wpryntupubpp.

1. Uwhdwuydb] 5u hwdwwwwmwuluwubgunn wpnwwwnlybpnwfubph hwjmuwpbpdwu
fuunph [(Mddwu wjuyhup dnwnwplhsubp, npnug uwwuynn ufuwwupp thnpp L
Uwfunpnp uwhdwudws o-hg' wndnyh dwywpnuyh () U wy wwpwdbnpbph
huwpwynp wdtuweny] uwhdwiuwhwynufubph nGwpnud:

2. Lwwnbwuhubiph hwdwwwwwufuwubgdw fuunph nhunwpydws pninp npduwdpubph
nGwpnud ubpluwywgyb) b ngyuiubph ypw hhdugws wignphed, wpunwwwwnybpdwu
swithp (hwlwnhp pwgdnyeniunud hwdwwwwnwuluwuu  niubgnn  hwwnlwuhoubiph
pwtwlp) npnotiint Gwwiinwyny:

3. Unwgwd owunhdhqughwih fuunhpubpp ybpwdbwybpwyb] G npwbu wpnbu
hwjintuh gpwdnd wdbuwbdwu hnuph hwjnuwpbpdwu fuunhp, gnyg £ wpybp

fuunhpubph hwdwpdbipnipniup b nddwu hwoynnuijut wipryniuwybunnieniup:

4. 8nyg £ wpdb, np pwpdp swihnnuwuniegyuwu nbwpnid, Gpp wgnwuowt/wndndy
hwpwpbipnieiniup 5(d log(4nm/a))Y*-hg W&s k, Godwphin hwdwwwnwufuwubgunn
wpunwwwwnlbpnwdp huwpwynp £ yGpwuugul) 1 — o hwjwuwlwunyegjwdp:

5. 8nyg L wpdb|, np «wybinpne hwnlwupoubph wnwnyeywu nbwpnd LSL-h (3)
wuowwndwu gnpdwlhgp dhupdwpu owwnhdw k:

6. Lwl thnpouwlwu Swuwwwphny gnyg £ wpdb, np Unp wnwowpyyuwd
wghphpdp muwly £ owdbh Gogphin Jbpwlwuqul hwdwwywwnwufuwubgunn
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wpwnwwwwnlbpnudp, Uwuwwbu snLubuwny hwdwuwwwwufuwubgunn
wpunwwwwnlbpdwu swihp («wybinpne»  hwnlwupoubph pwuwlp), hwdbdwnws
nwuwlywu dhpnnubph hbw, npnup dnunwpynd U wpunwwwwmybpndp Jhwju
wpunwwwwnlbpdwu swihp bwjuwwbu $hpubint nbwpnid:

. Unwownyywd dbpnnubph Gownngenitup b hwoynnuwt  hpwgnpdbijhnieniup
gnigwnnybip Gu  wphbunwlwunpbu  gbubpwgws W ppwlwt  ndjuiubph
snbdwpwuubph ypw:
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PE3IOME
lancTaH TurpaH BaarHoBuy

CraTucTUYecKas W BbIYUCITUTENDBHAA CNOMHOCTb I1P06neMbl

onpepeneHus OTO6Pa)KeHMﬁ Anfg conocrtaBnéHua npusHakoe

B Ancceptalnn noiyveHbl cnegytolne pesynbrarbl:

PaspaboTaHbl cpeficTBa oLEHKM ANA Npobnembl onpefeneHna oTobpaKeHnid, oxuiaeman
olMbKa KOTOPbIX MeHblle 3afaHHOro YPOBHA « MNPU MUHUMANbHO BO3MOMHbIX

orpaHUYeHUAX Ha napameTp nomexu 6% n yposerb Liyma o,

2. BBC,D,CHa OcHOBaHHaA Ha AaHHbIX Npouedypa Ojia OoUeHKKU Konmn4ecTea Bbl6pOCOB ona
noboro clny4aa I'IpO6J'IeMbI onpegeneHna OTO6pa)KeHVIVI, C Bb|6poca|vw| npucyTCcTBYOLWLUMN

B 0boux Habopax faHHbIX.

3. HOJ'Iy‘-IeHHaFI B pesynbTate 3afja4a onTnmusauunn 6bina ccbopmynMpOBaHa KaK 3aja4da
MoToKa ¢ MWUHUMANBHOW CTOMMOCTbIO B rpacbe, n 6bio NMnoKasaHo, 4Y4TO €€ MOMHO

3pPEKTUBHO PeLLUTb BbIHUCITUTENBHO.

4. Boino nokasaHo, 4TO B MHOTOMEPHOM MOCTAHOBKE MPOGMEMDbI, €CM OTHOLUEHME
curHan/wym npesbiwaet 5(d log(4nm/a))'/#, To ncTHHoe oTobpareHme conocToBNeHUA

MOMeET ObITb BOCCTAHOBJIEHO C BEPOATHOCTbIO 1—oa.

[NokasaHo, 4TO NpPW HanMYMKU BbIOPOCOB CKOPOCTb paspeneHua ana LSL (3) Asnaetca

MUHMMAKCHO-OMTUMANBHOM.

3Hcr|epmmeHTaano NnoKaszaHo, 470 Halla oOCHOBaHHaA Ha pfaHHbIX nNpouedypa
onpepeneHna OTO6pa)KeHVIFI 0NA  conocTtaBneHWMA MNpPpU3HaKoB 6e3 ,[l,OI'IOJ'IHVITeJ'IbHOVI
VIHCIDOpMaLI,VIVI nepen cornocrtaBneHnem  paeTt  pesynbrarbl, aHanorunytble 6bonee
Knaccn4ecKkmm anropmuimam, KOTOpbIM B HKa4deCcTBE BXOOHbIX JaHHbIX 6bIn 3apjaH

WCTUHHbIN pasmep conocrtaBneHUA.
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7. ﬂOCTVIFHyTbIe pesynbTtatbl U BblYUCANUTENIbHAA OCYLLECTBUMOCTb  MPpenoMeHHbIX

anropnTmoB 6bin NpPONNNICTpMpoBaHbl Ha CUHTETUHECKUX N pealibHbIX faHHbIX.
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