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Abstract

The dissertation is devoted to the study of Kahler manifolds as the phase space of classical
mechanical (super)integrable systems. Kahler manifolds are widely used in numerous sections of
modern theoretical and mathematical physics. They are mostly considered as the configuration
space of various systems. Considering them as the phase space of some (super)integrable systems
leads us to an interesting and elegant description of integrability rooted in the underlying geometry
of the phase space.

As demonstrated in the dissertation, the methods used herein can be extremely useful for the
supersymmetrization of a given model. The phase superspaces of such supersymmetric extensions
are Kahler super-manifolds, meaning a Kdhler manifold equipped with Grassmann anticommuting
coordinates as well.

The thesis comprises four chapters (excluding the introductory chapter). The second chapter is
dedicated to a renowned classical system known as the Euler top. It is considered as a one-

dimensional system with a Kahler phase space, specifically, C[FDI, and its super-symmetrization in
that context. In the third chapter, we study compact and non-compact complex projective spaces,
along with their symmetries. Focusing on the non-compact case, we regard them as phase spaces
of N-dimensional conformal mechanics, N-dimensional oscillator, and N-dimensional Coulomb
system. Their integrability properties are studied from the geometrical point of view. In the fourth
chapter, we examine the possibilities of supersymmetrization within this formalism and consider
the options for supersymmetrization for the examples from the previous chapter. Finally, the fifth
chapter is devoted to the discussion of the main results and possible future developments of the
ideas explored in this thesis.

Relevance and Motivation

One of the advantages of considering integrable systems on Kahler manifolds is that the Kahler
structure of the phase spaces enables the use of the geometric quantization method. The number
of known nontrivial (super)integrable systems featuring a Kdhler phase space is quite limited, and
their examination remains at the periphery of integrable systems theory. This is particularly
surprising, given that the quantization of systems with a Kahler phase space has been a focal point
in modern geometry ever since the inception of geometric quantization. A notable integrable
model with a Kahler phase space that is currently under extensive investigation is the
(compactified) Ruijesnaars-Schneider model. However, even this system is primarily studied in
canonical coordinates.

Establishing a connection between existing integrable systems and their constants of motion with
the isometries of a Kdhler manifold viewed as a phase space can be useful in comprehending the
system's geometry. It's an important step towards quantization in non-canonical coordinates.
Besides, there are indications that Kahler phase spaces can be useful for studying conventional
Hamiltonian systems, particularly those formulated on the cotangent bundle of Riemann manifolds.



Aim of dissertation

Developing a geometrical formalism for studying (super)integrable systems. Analysis of the
possibility of construction of supersymmetric extensions of a given (super)integrable model within
that formalism.

Publications and Conferences

The dissertation is primarily based on four papers published in Physical Review D, Physics Letters
A, International Journal of Modern Physics A, and Physics of Particles and Nuclei Letters. Further
details can be found at the end of this synopsis in the publication list.

Throughout the project, six talks were delivered on the topic at various conferences:

e Supersymmetry in Integrable Systems, Dubna (2023)

® Recent Advances in Fundamental Physics, Thilisi (2022)
e Symmetry Methods in Physics, Yerevan (2022)

e Supersymmetry and Integrability, Dubna (2022)

e Aspects of Symmetry, Online (2021)

e Recent Advances in Mathematical Physics, Online (2020)

Main points to defend

e The Euler top was formulated as a one-dimensional system with a phase space CP!. Then we
proposed the procedure of N = 2k a priori integrable supersymmetrization of a generic one-
dimensional systems which provides the family of ./ -supersymmetric extensions depending on
N'[2 arbitrary real functions. Thus, we gave the /= 2k supersymmetric extensions of the Euler
top as well.

¢ The superintegrable generalizations of conformal mechanics, oscillator and Coulomb systems can
be naturally described in terms of the non-compact complex projective space considered as a
phase space.

e The su(1,N | M )-superconformal mechanics was constructed, formulating them on phase
superspace given by the non-compact analog of complex projective superspace cpNM,

e Superintegrable oscillator- and Coulomb- like systems with a su(1,N|M) dynamical
superalgebra was proposed. It was found that oscillator-like systems admit deformed 4 = 2M
Poincaré supersymmetry, in contrast with Coulomb-like ones.



Structure of dissertation
The dissertation consists five chapters:

Introduction

Euler top and freedom in supersymmetrization of one-dimensional mechanics
Non-compact complex projective space as a phase space of superintegrable systems
su(1.N | M )-Superconformal Mechanics and Deformations

Discussion

vk wNe

Chapter 1

In this introductory chapter, we study Kadhler manifolds in general and also consider some
examples that appear in the dissertation. Additionally, some notations are introduced that are
common throughout the thesis.

According to Darboux's theorem, any symplectic structure can locally be presented in the
canonical form corresponding to canonical Poisson brackets. Furthermore, any cotangent bundle of
a Riemann manifold can be equipped with the globally defined canonical symplectic structure.
Hence, for the Hamiltonian description of systems of particles moving on the Riemann space, we
can restrict ourselves to the canonical symplectic structure (and canonical Poisson brackets). Non-
canonical Poisson brackets are usually used for the description of more sophisticated systems, such
as various modifications of tops, (iso)spin dynamics, etc.

As it was mentioned above, Kahler manifolds have three mutually compatible structures, namely
complex structure, Riemannian structure and symplectic structure. Kdahler manifold is a particular

case of the general Hermitian manifold (gal;dz“dzb). For any Hermitian metric one can define a 2-
form

w =18,5dz"* A dz’

This 2-form is called a fundamental form.

Hermitian manifold is called if this 2-form is symplectic (closed and non-degenerate). This
condition puts a strong limitation, which allows us to express a Kdhler metric as the second
derivative of a function known as the Kahler potential.

0’K(z,2)

dz49zb
It is worth to mention that it is defined up to a holomorphic or antiholomorphic function:
K(z,2) = Kz, )+ UR) + U@).

Symplectic structure of Kahler manifolds allows as naturally equip it with Poisson brackets.

. ab( 9f 08  dg of b
(fglo=ig® (52 - =5 —2), gb
0z% 07 0z% 07
Since the symplectic structure relates functions (Hamiltonians) and vector fields (Hamiltonian
vector fields), we can introduce functions, which generate Killing vector fields.

5
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d __ 0 z
— _ya a a_ _ ;p,ab;_
VM = {hﬂ,}o = Vﬂ 392a + VM 57a’ VM =—ig 0bhﬂ
Such functions are called Killing potentials. By employing the Killing Equations, limitations on Killing
potentials can be deduced. These potentials must have real values and must satisfy the following

equation.

2
0%hy, CahM=0

0z40zb Fab 0z¢
These functions are extremely useful for studying systems on Kahler manifolds in presence of a
constant magnetic field. Since any 2-form is closed in two (real) dimensions, a one-dimensional
orientable complex manifold (Riemann surface) can always be equipped with a Kahler structure.
Many components of the Christoffel symbols and Riemann tensor vanish.

_ pad, _ -
0y =8 R =—T3) -
Chapter 2

In this chapter, we explore a basic one-dimensional model that possesses a Kdhler phase space.
The model under consideration is an Euler top, a classical mechanical integrable system widely
studied for its interesting dynamics. The Euler top represents a rotating rigid body, exhibiting rich
behaviors related to angular momentum and precession.

Conventionally it is described by the Hamiltonian system with degenerated Poisson brackets
parameterized by the components of angular momentum ¢ = (xq, x5, X3),

3 xl_2

o 2

where SHS is the Hamiltonian, and SI_i>0$ are the principal momenta of inertia.
Since x; form 50 (3) algebra, the system has a Casimir function

{x,-,xj} = S[jkxk, H =

3
C=Yx: {Cw).x}=0.
i=1

Its fixation leads to the Hamiltonian system with two-dimensional non-degenerated phase space,
i.e. one-dimensional system. Hence, Euler top is a priori integrable.

For the description of the Euler top in terms of non-degenerated phase space, let us introduce
instead of x;, the coordinatesj, z, Z.

Clearly, j is the complete angular momentum. In these coordinates the Poisson brackets read
l .
(Z.2)=--d +22)% {z.j}=1{z.2} =0,
J

while the momentum generators look as follows

6



3
j2 = Z xiz,
i=1

. z2+2Z L 1(Z-2) .2z -1
xpi=hyp=j =, Xpi=hy=j———, x3i=h3=]

14+z2Z

1+zZ 14+zzZ

Fixing j to be constant we arrive at the two-dimensional phase space (parameterized by the
single complex coordinate z and equipped with the one-(complex)dimensional Kdhler structure, i.e.
the complex projective plane CP! with the Fubini-Study metrics and corresponding Kahler

potential
dzd?z

(z,2)dzd7 =2 ——————,
8 URE e

K(z,Z)=2jlog(1+z7).

In these terms the Hamiltonian of Euler top reads

b2 +7%) +2azz 2 2 1 1 11
H=-j? (&% +27) + 2422 J—, with ¢ =——-———— b =———.
2(1 + ZZ)Z 2 I3 5L o) L I

We can rewrite Euler top in canonical coordinates

0
z=c0tze’¢, {@,jcos8}=1=> p:=jcosf.
Performing a canonical transformation (p, ¢) — (P, Q)

a+bcos2e

P=y\/——p,
2
2 do 2

0=/ J =\/—F(¢.k): 1Q.P)=1,

a+b 1 2b .5 a+b

Tarp e

where F ((p, k) is an elliptic integral of the first kind, with k = 1/2b/(a + b) being its modulus,
and @ is the so-called Jacobi amplitude

o =F! (F,k) = amp (F, k), sin ¢ = sin(amp(F, k)) = sn(F, k),

we arrive to the following form of Hamiltonian

1 i2b +b 2b 2
H==P + 22 (1 /[2220,4/ +
2 2 2 a+b 21




So, the Euler top is the one-dimensional Hamiltonian system with cp! phase space and
with the Hamiltonian given by the quadratic functions of its Killing potentials. In the canonical
coordinates it results in the one-dimensional nonlinear oscillator.

We are interested in the supersymmetrization compatible with the Kahler geometry describing
the phase space of the Euler top. There are many ways of supersymmetrization of such a one
dimensional systems including Euler top, but here we follow a less geometrical approach. We will
consider the systems with generic two-(real)dimensional phase space. Such phase spaces can be
always equipped with the one-(complex) dimensional Kdhler structure, so that the Poisson

brackets will be given by the relation
1

g(z,2)
For the construction of ./ -supersymmetric extensions of these systems ( with even /)

{z,z} =

we extend this phase space by the canonical complex Grassmann variables y,, a = 1,..., 7
—b b
{Wa’l// } =16,

With these Poisson brackets at hands we can construct the ./ supersymmetric extensions of two-
dimensional systems defined by the Poisson brackets {z, Z} and by any positive Hamiltonian
H(z,Z)>0,

{Qwa} =lég%, H =H(z,z)+ fermions.

In accordance with the generalization of Liouville theorem to the supermanifolds these
supersymmetric extensions will be a priory integrable.

For the construction of /#* = 2 supersymmetric extension of the system with Hamiltonian
H(z,7) > 0 we choose an appropriate Ansatz for supercharges and arrive the family of 4 =2
supersymmetric extensions of the Hamiltonian H, parameterized by the arbitrary real function
d(z,2)

Q =VHe®y, Q=+\He"®y > X =H+{®Hlyy.

Specifying the Poisson brackets and Hamiltonian we will get the respective supersymmetric
extension of the Euler top.

For the construction of nontrivial 4/ = 4 supersymmetric system we choose the following Ansatz
for supercharges

N2 N2
Ou = N1z, Dy, + (2, Dy, 2 wp?, 0% =fiz. 2" - fale. i 2 7y, L with
b=1 b=1

fiz.7) = He®1@D, f = R(z,7)e!@17%2),

8



Then, we require that the supercharges form the ./ = 4 Poincaré superalgebra, which results in
the following conditions on the functions involved

’{fl,f1}=flf2+f1f2 < {\/E,dﬁ}=Rcos<I>2,

with the Hamiltonian & acquiring the form

. ) . ) i N2 2
H =[h+i{f B} Y v+ > ({fl:fz} + {fz»f1}) R
a=1 a=1

Thus, we get the /= 4 supersymmetric mechanics parametrized by two arbitrary functions
(I)I,Z .

We have shown that the supercharges with cubic fermionic terms allow to construct A4 =4
supersymmetric mechanics with two functional degrees of freedom, /' = 6 supersymmetric
mechanics with single functional degree of freedom, and /' =8 supersymmetric mechanics
without any functional freedom. The supercharges with fifth-order fermionic terms will lead to the
N = 6 supersymmetric mechanics with three functional degrees of freedom and to ./ =8
supersymmetric mechanics with two functional degrees of freedom. Furthermore, one can expect
that the supercharges  with seventh-order fermionic terms could lead to the /=8
supersymmetric mechanics with four functional degrees of freedom and so on.

It is easy to deduce that for the construction of # = 10,12,...2k superextensions of initial
Hamiltonian we should choose the following ansatzes for the supercharges

N2 12 !
0, = filz, Dy, + Zf[.:,.](Z,Z)l//a Z wpir” ),

=1 b=1

w2 w12 !

0 =fi. D + Y frn@ 2w | X w? ).
=1 b=1
with a,b = 1,..., /' /2k. Then, requiring that they form Poincaré superalgebra we will get the
family of /" = 2k supersymmetric Hamiltonians parameterized by k arbitrary real functions.
By specifying the relevant formulas for Euler top, we obtain a family of /" = 2k supersymmetric
extensions for Euler top as well

Chapter 3

In this chapter, we propose the description of superintegrable models with dynamical so(1,2)
symmetry, as well as the generic superintegrable deformations of oscillator and Coulomb systems,
in terms of higher-dimensional Klein model (serving as the non-compact analog of complex
projective space), considered as the phase space.

9



N-dimensional complex projective space CPY and its non-compact analog @ﬁN. They can be
equipped with the su (N + 1)-invariant (for the compact case) and the su(1.N ) invariant (for the
non-compact case) Kahler metrics, known as the Fubini-Study metrics. These metrics and
respective Kdhler potentials are defined by the expressions (with the upper sign corresponding to

N . ==V,
CP*", and the lower sign to CP )
gdzdz g(Zdz)(zdZ)

-+ —
1+zZ (1+z72)2
as well as the inverse metrics and Poisson brackets given by them

g,pdz%dzb = , H=xglog(ltz7),

— — 1 T
W=D D). (20 = (1220 £67).

This spaces were obtained by the reduction of (pseudo)Euclidean space clN ~ U(1,N)

(CN+1 >~ U(N + 1))by the action of U (1) generator. So, g from the above formulae is a constant
to which we have set the U (1) generator equal.
We consider N-dimensional analog of the Klein model of non-compact complex projective space

—~~—N
CP . The metric and Kahler potential are given by

_ gldw +:2%dz"]dw — 1P dzP)] gdz"dz”

dS2 _ — 0
[t(w — W) —z7Z7]? tw—w)—zrzr

H=-glogiw—-w)—277"],  a,py=1..N-L
The poisson brackets are given by

_ ) — SV EY
(w,w}y=—Aw —w), {w, 2% =Az% (% 7/} =1A8%; A = M .

8
The isometry generators are
ww 1 w+w 7% 7% aded
H=—— K=—, D= , Hy=——m Ky=—, H ;=
A A A A A A

These generators are forming su(1.N ) algebra

10



{H . K}=-D, {H,D}=-2H, {K,D}=
{H,K,})=-H,, {(H H,} ={H, Ha/;} =0,
{K’H(l}=K(1’ {K9K }={K7Hﬁ_}=0s

{D.K,}=-K,, {D.H,}=H,, {D,Ha/;} =0,

{Kqs Ky = {Hy, Hg} = {Ky, Hg} = 0
(Ko Ky = = 1K8,5. {Hyo Hy) = = 1H, 5.
{Hyp: Hyst = 1(Hy56,5 — Hypdy5),

{Ka» Hgp} = —1KpSay,  {(Hy, Hpy} = —1Hpéyy,

{ (17Hﬂ} a/)’+ g+2H —1D 6

The generators H, K, D define the conformal algebra su(1.1) = so(1.2), and the generators Haﬂ_

define the algebra u(N — 1).
It is seen that

« the Hamiltonian H has two sets of constants of motion H aN and H wp therefore it defines a

superintegrable system;
« the Hamiltonian K has two sets of constants of motion as well, H, and Ha/; . Thus, it defines

the superintegrable system as well;
o thetriples (H, H, 5, Haﬂ-) and (K, H,, Ha[;) transform into each other within discrete

transformation

Z(l

1
(W7 Za) - (__7 ) =
w w

D — —D,(H, H(pHa/}) - (K’ - Ka’ Hgﬁ)? (K, Ka’ /j) - (H o’ (lﬁ)

Adding to the Hamiltonian H the appropriate function of K, we get the superintegrable
oscillator- and Coulomb-like systems.
We define the oscillator-like Hamiltonian by the expression

H,. = H+ 0’K
and introduce the following generators

A,=H,+1wK, B,=H,—10K,.
Here are some relevant commutation relations:

11



{AmA/)’} == ( ose — @ (g + Z y) a/g"'ZICUHﬁ

{Ba,Bﬂ}z— ( Hy, +o0(g+ Z ﬁ_zleaﬂ’
{Ags Bp) = = 18,5(Hose — 200 K+la)D),
{Hyger Ag) = —10Aq,  {Hpge, By} =10B,,  {Hpge, Ha/}} =0.

Then we immediately deduce that the Hamiltonian besides H ap has the additional constants of

motion which provide the system by the maximal superintegrability property

sazp

79z
> (w2 + a)z)

M,y = AuBy = HyHy + 0> K, K + 10 (K, Hy — HyKpg) =

with
{Hyse» Maﬂ} =0

We define the Coulomb-like Hamiltonian with the additional constants of motion which provide
the system by the maximal superintegrability property as follows

Y H
Heoyy=H—-——, Ry=Hyy+1y -

V2K (¢ + Z)  HpV2K

with
{Hcou» Ra} = {Hcours Haﬂ_} =0

One can transit to canonical coordinates

Pr V27 a Y 2 1Pg

=t 2 r =€ > {r,[}}=1, {40(1’7[(1}:1’
r r

r
1 /M=l 2
= E Z T, +8 ] -

a=1

In these terms the generators of conformal algebra take the form of conformal mechanics with
separated "radial" and "angular" parts

where

2

n=tryr k- p-
= +r2 =5 =p,r.

12



And the rest of generators
D, T+g _ Ty _ —ti( @y — o
H, =+/2m, (é—lT>e Pa, Ka=”\/76 Wa, Ha/;=1/ﬂ:an:/;e ( « ﬁ).

And finally let us write down the oscillator and Coulomb Hamiltonians in these coordinates

2 2.2 2
_pr I o b Iy
o=zt Mow=y+a o

Chapter 4.

In this chapter we consider systems with su (1,N | M )-symmetric (N | M )c-dimensional Kahler

phase space and relate their symmetries with the isometry generators of the super-Kahler
structure.

—N|M
We consider “non-compact projective superspace” CP , parameterized by N complex bosonic

coordinates w, z%, where @ = 1,..., N — 1, and M complex fermionic coordinates QA, where
A =1,...,M . They obey the following commutation relations

(w,w) =—Aw — ), {z%7P) =145, (04,68} = A58,
(W, 2% = AZ%,  {w,0%) = A04,

1 N—1 M ~
where A =— l(w—v'v)—ZzyZ}'+lZ¢9C¢9C .
8 y=1 C=1

Here as well, g is a constant, playing analogous role as in previous chapter. The algebra above is
defined by the following super-Kahler structure

H = —glogli(w —w) — 2%2% + 16464).

The isometry algebra of this space is su(N,1 | M). It is defined by the following Killing potentials

wWw 1 w+w 7% 7% [l
H=—", K=—, D= . H, = LK, = ha= ,
A A A T A aT AT ATy
0 04w S fA o 9422 R 9498
=, =, a7 = 5 p =1 .
A A A A Aa A AB A

The generators (Killing potentials) form su(1,N|M) superalgebra. For the convenience it is divided
into three sectors: "bosonic", "fermionic" and "mixed" ones.

13



The bosonic sector is direct product of the su(1,N ) algebra defined by the generators H, D, K
and the u (M ) algebra defined by the R-symmetry generators. Explicitly, the su (1.N ) algebra is
given by the relations

(H,K}=-D, {H,D}=-2H, {K,D}=2K,
(H.K,) = —H, (H.Hg}=1{H.H,j) =0,
(K.H,) =K, (K.K,}={K.H,p) =0,
{D.Ky} ==K, (D,Hy}=H, {D,H,u =0,
{Ka» Ky = {Hy, Hgt = {K,, Hg} = 0,

{Kq» Kp} = — 1K3,5.  {Hy, Hp) =— 1Hé, 5,
{Hyp, Hy5) = 1(Hy56,5 — Hy3045),

{Kg» Hgy} = —1Kg0y5, {Hgy, Hgyt = — 1Hpb,y,

]7’
_ 1 N—1 M
(Ko g} = Hyg + | 8 + D> Hy+ Y Reg—1D (6,5
y=1 C=1

The R-symmetry generators form u (M ) algebra and commute with all generators of su (1,N ):
{Ryp: Rept = 1(RypOcp — Repdap)s  (Rap, (H; K3 D3 Ko Hys hyp)} = 0.
The Poisson brackets between fermionic generators are as follows

N=1 M
— l
{84 0p} = —tRyp+ 78 + D Hy+ ) Ree—1D |65
=1 c=1

{©4a:-Opg} = Ry ppa + Hpadp p-
{S4.Opa} = Kudprp. {04 Opal = Hydypp.
{Sa- S} = {Q4- O} = {O4.Opj} = {Sa. Op} = {S4.Opa} = {04, Ops} = 0.

Hence, the functions Q4 play the role of supercharges for the Hamiltonian H, and the functions S4

define the supercharges of the Hamiltonian K playing the role of generator of conformal boosts.
The mixed sector is given by the relations

14



{H,Q4} = {H,045} =0, {H,S4}=-04,

{K.,Sp} ={K,045} =0, {K,Q4} =Sy,

{D,Sp} ==84 {D,0a} =04 ({D,0453}=0

{04 Ky}l == Oua, {Qa.(Hyi Hyi Ky Hygy = 0,

{Sas Ho} = Opq. {Sp. (Kos Ko Hoy Hyp)} = 0,

{®aa> Kp} = 154055, {Oaa, Hgt =1046p5. {Oaa hpy} = 1047654

{@4a, Hy) = {045, Ko} =0,

{Sa, Rget = —1Spdac>  (Oa> Rpel = —10p0s¢> {Oagq Rpet = —1Opa0,¢ -

Looking to the all Poisson bracket relations together we conclude that

« The bosonic functions Hy, hi,5, and the fermionic functions Q4, ©45 commute with the

Hamiltonian H and thus, provide it by the superintegrability property;

« The bosonic functions K, ha/; and the fermionic functions S4, ©®4; commute with the

generator K. Hence, the Hamiltonian K defines the superintegrable system as well.

e The triples (H, H,,Qy4.) and (K, K, Sy.) transform into each other under the discrete
transformation

1 z% 04
W, 2%,04) = (——, .2 =
w w w

D — _Dy (H, Ha’ QA») - (K, - Kaa _SA)’ (KaKa’ SA) - (H’ Ha» QA:)

« The functions haﬁ’ ©4 5 are invariant under discrete transformation. Moreover, they appear to be

constants of motion both for H and K. Hence, they remain to be constants of motion for any
Hamiltonian being the functions of H, K. In particular, adding to the Hamiltonian H the
appropriate function of K, we get the superintegrable oscillator- and Coulomb-like systems with
dynamical superconformal symmetry ;

e The superalgebra su(1,N | M ) admits 5-graded decomposition
sulLLNIM)=f_,®F_1®fo®Fr1 D2
with
[fl-,fj] C iy fori,je(-2-1012},
where f; = O for |i| > 2 is understood. The subset f includes the generators

D, haﬁ" ®Ad»@A a, Ry p, the subsets f_, and f, contain only generators H and K, respectively,

while the subsets f_; and f; contain the generators H,, H,, Q4, Q4 and K, K, S4, S4-

15



One can transform complex coordinates to canonical ones as follows

:&_l\/ZJ o

2r
a
, F=—S——cl%a, 9=
r

2
V2 a
r r

withy/2.7 =g + Z T, + Z l)(A){A being the Casimir element, and obeying the following

a=1
Poisson relations
(o) =1 A@e gl =845 (" 1P = 54E.
The isometry generators take the form

r
H=—+—, K=—, D =p,r,

T, _ 1 _ 10 )
Hazwlfe "pa(pr—l;), Ka=r1/2“ "o, H,gz=/[Tamge "Pa=0p

_A =A

7 V2J 7
Or="—|p -1 , Sy="—r, =y 1/ e'%a, l)( ;(
§ ( ) G

—N|M
We define the supersymmetric oscillator-like system with the phase space CIP by the
Hamiltonian

H,, = H+ o’K.

This system possesses the u (!N ) symmetry given by the generators ha/? defined in (among them

N — 1 constants of motion 7, are functionally independent), the U (M ) R-symmetry given by the
generators Ry p as well as N — 1 hidden symmetries given by the generators

sazp

Moy = (Hy +10K)(Hg —10Kp) = =—w? + 0%) © {Hpge, Mg} =0,

with symmetry algebra

s Mys) = 1 (Moo, + Myasg): (Mo, Mys) =0,

M M M M M M M M
_ _ 2 apMys apMys apys apMys
{M(lﬂ’ M]/(S} =1| 4w Ihash/}}—, bl ho- 6(1}—, el h - as T (S/}}—, - s 6ﬁ5 .
ay asd Py o

Let us choose the following Ansatz for supercharges
@A = QA + a)CABSB,
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with constant matrix C4 g obeying the condition Cqp+ Cps =0, CapCpp =—384p-
Calculating Poisson brackets we get
{Qa, @} = Hyscbpp, {Qa,Qpt=—10F4p,  {Q4, Qp} =10Fp,

where @y p:= CycRpe + CpcRyes ©i5:= %4 = CacRcp + CpcRei -

Then we get that the algebra of generators @4, # 4., .%ﬁ is closed indeed:

{Q4, Hyse} = 0 CypQp, {ap. Hpse} =0,

{@p, Epct = 1(CypQc + Cpclp),

{@4, Tpc) = = 1(CppQpdse + Ceplpdap) -

{Gap.%cpt = 1(Cap¥pc + Cac¥pp + CppGac + Cpc¥ap):

{Zap Ccp} = 1(Cpndac + Condap)€np + 1(Cpndpc + Condpp)Ena -

and surely,
1X0)
{@4 Hyse + — D G} = 0.
2 B

Hence, for the M = 2k the above oscillator-like system possesses deformed 4 = 4k
supersymmetry.

—~N|M
Now, let us construct on the phase space CP the Coulomb-like system given by the
Hamiltonian

14
Heoyy=H+——,

V2K
The bosonic constants of motion of this system are given by the u (N — 1) symmetry generators
h(xﬁ, and by the N — 1 additional constants of motion

K
Ry =H,+1y I\/;_K o AHcour Rt = {Hcours h(ﬁ} =0.

These generators form the algebra

2 l}/zl/l _
5y ) ly af
{R(l’ R/))} = — l5a/)’<HC0ul - _212> + 2]3 5

{hyp Ry} = l5},ﬁ‘Ra, {Ry, Rﬂ} =0.
One can expect, that in analogy with oscillator-like system, our Coulomb-like system would
possess (deformed) /' = 2M-super-Poincaré symmetry
for M = 2k and y > 1. However, it is not a case.
Indeed, let us choose the following Ansatz for supercharges
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Sp
Qp =04 ++/2/C ,
A =04+ 21 AB(2K)3/4

with  the constant matrix C4 g obeying the conditions mentioned in oscillator consideration,
M =2k andy > 0. Calculating their Poisson brackets we find

3 VT - e
{@a. @B} = Heoutbap + 2 2Ky R (84CBpSp + SBCanSD)

Ve

{Q4, @B} = 20K

————(CppRE + C4cRY), {4 RE} = — 1RS¢

Further calculating the Poisson brackets of @4 with the generators appearing in the r.h.s. of the
above expressions we get that the superalgebra is not closed. For example,

Q4. H, = S Qp — —S8gD
(@4 Heoput} K2 At QKA AB< B~ 1k B )

Hence, proposed supercharges do not yield closed deformation of.//" = 2 M-super-Poincaré
algebra.

Chapter 5.

This is a discussion chapter outlining the main results of the thesis. In the first chapter we have
discussed some basics of Hamiltonian formalism, the geometry of integrability, specially we have
considered the use of the Kdhler manifold regarded as a phase space of Hamiltonian systems. Some
examples of maximally integrable systems and maximally symmetric Kdhler (phase) spaces have
been illustrated.

In the second chapter we formulated the Euler top as a system with  phase space C[P’l, i.e. as
one-dimensional system. Then we proposed the procedure of A =2k d priori integrable
supersymmetrization of a generic one-dimensional systems which provides the family of A
-supersymmetric extensions depending on //2 arbitrary real functions. Thus, we gave the
A = 2k supersymmetric extensions of the Euler top as well.

In the third chapter we have shown that the superintegrable generalizations of conformal
mechanics, oscillator and Coulomb systems can be naturally described in terms of the non-
compact complex projective space considered as a phase space. This observation yields some
interesting directions for further studies.

For example, performing the transformation to the higher-dimensional Poincare model, we
expect to present the considered models in the Ruijsenaars-Schneider -like form
and in this way to find, some superintegrable cases of the Ruijsenaars-Schneider systems, as well
as their supersymmetric/superconformal extensions.
Another one is describing the superintegrable deformations of the free particle on the spheres/
hyperboloids, and the spherical/hyperbolic oscillators, in a similar way. For this purpose we expect
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to consider the "k-deformation" of the Kahler structure of the Klein model, in the spirit of the so-
called “k-deformation approach”.
As well as, we are going to undertake the construction of spin-extensions for the mentioned
models, opting for the non-compact analogs of complex Grassmannians as phase spaces.
In Chapter 4 we suggested to construct the su(1,N | M )-superconformal mechanics formulating
them on phase superspace given by the non-compact analog of complex projective superspace

N|M
CcP | . The su(1,N | M) symmetry generators were defined there as a Killing potentials of

M

alf’N . We parameterized this phase space by the specific coordinates allowing to interpret it as
a higher-dimensional super-analog of the Lobachevsky plane parameterized by lower half-plane
(Klein model). Then we transited to the canonical coordinates corresponding to the known
separation of the "radial" and "angular" parts of (super)conformal mechanics. Relating the
"angular" coordinates with action-angle variables we demonstrated that proposed scheme allows
to construct the su (1,N | M) superconformal extensions of wide class of superintegrable systems.
We also proposed the superintegrable oscillator- and Coulomb- like systems with a su(1,N |M)

dynamical superalgebra, and found that oscillator-like systems admit deformed .#" = 2M Poincaré
supersymmetry, in contrast with Coulomb-like ones.

In fact, proposed scheme demonstrated the effectiveness of the supersymmetrization via
formulation of the initial systems in terms of Kdhler phase space and further generalisation of the
latter ones. In order to relate considered systems with the conventional ones (with Euclidean
configuration spaces) , we restricted ourselves by the non-compact complex projective superspace.
So, we are sure that applying the same approach to the conventional (compact) complex projective
spaces we can find many new integrable systems as well and construct their unpredictable
extended supersymmetric extensions.

Complete Bibliography is presented in the thesis.
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hwuwywl Epply Uppnipp
YtEnwl thnrpwphu tnwpwdnieynituny untwytpuhdtnphy dbhluwuhywltn

Udthnthwghp

Unbbwpununigyniup Udhpdwd £ nwuwywl Jehuwbhywywl (gbp)huntgndnn
hwJdwywpgbph nruncdbwuhpniejwlp, npnug nlubl YEGpwl thnyqwihu nwpwdni-pindu, W
npwug gbphwdwswih punhwUpwgnudubph Ywnnigdwlp: bUswbu gnuyg E wnpdbg
whuwwnwugenid, wjunbin ogunwagnndynn Ubennutpp Ywpnn Bu swihwquwlg oginwlwn hubg
nwpwuwnbuwly Jnnbubph gbphwdwsywihbgdwl hwdwp: LJwl gbp-hwdwswih
punhwupwgnwdutph thnywihtu gbpunwpwdnyenuubpp UbGEpwu gbppwg-dwalinieynilltbn
Gu, wjuhUupl® ubitpwl pwqUwalnieyniultp, npnup hwgbgwd U Lwl Spwudwlyjwl
hwlywynunLinwgynn Ynnpnhuwwnmubnny:

Qwuwywl hwdwywnpg EjEph hnp allwybpwyb E npwtu cp! hnywihl tnwnpwdne-yncu
nlutignn hwdwywng, wjuhUpl’ npwbu Jhwswih hwdwlwpg: Wunthbnle wnwownyyt) E
dhwswih hwdwwnagbiph w wyphnpp huntiapbih 4 = 2kgbiphwdwswihtgdwl hwdpunhwlnip
pUupwgwlwng, npp Ryl E nwihu unnigtg N -gbphwdwswith punhwupwgnudutph Jh
wupnne puwnwlhe, npnbp Ywhidwd Gu A7/2 judwywlywl hpwlwl $nluyghwlbinhg:
Wuwhuny, winpyb BU Lwle £yGph hnth A = 2kgbphwdwswith punhwupwgnudubipp:

8nyg £ wpyb, np Ynubnpd Jthuwlhywyh, oughywwnph W YnynUyjwl hwdwlwpagh
gbphUuwnbagnbih punhwupwgnudubpp plwlwunpbtl Ywpbih B Uywpwagpbp ny Yndwwywn
Undwibpu wpnjtyunhy wwpwdniejwl dhongnyd, npp nhwnwpyynd £ npwybu wyn
hwJwywpgbnph thnywjhu nmnwpwdnipnil:
Unwownyyti £ ywnnigty su(1,N | M) gtipynu$npd dbhuwlhlyw® alwytipwybind wjl npwtiu

hwdwwnag, nph thnwhb gbpunwpwdnie)niup cpNIM

~~—N|M
gbpunwpwdnipywl ny Yndywlyun wuwingu £ ( CP | ): su(l,N|M) hwdwswihnipjwl

Undwitipu wpnjiunhy

gbUbGpwwnpubpp uwhdwudtb; U npwbu aﬁNM-h £hihugh wnubughwubp: ®nwjhu
nwpwdnLintup wwpwdbwnphqugdbl £ hwwnndy Yynnpnhuwwnutbnny, husp renyp £ wndbp wju
JtyUwpwlutb] npwbu Lnpwslbulyne hwppnipjwl pwpap swihwlUh wlbwing, npp
wwpwdbpunhqugywd £ unnphlu Yhuwhwpeniejwdp (2iuwjuh dnnbp): WunthGunle wugnud E
Ywwwnpygb) ywunuwlwl Ynnpnhuwwmubph, npnbe hwdwwwunwupiwunwd GU (gbp)ynubnpd
dbhuwuhywih «nwnhwpy W «wlynduwhu» Jwubph hwjnuh wupwwndwlup: Ywwbiny
«wlynuwghu» Ynnpnhuwwnubpp wulynu-gnpannnieindu thnthnpuwwllbph htwn® gnyg E
wnpybl, np wnwowpyJwd upubdwl pnyp £ viwhu Ywnnwgb) gbphunbgptih hwdwlwpgbph
wyu nwuph su(1,N |M) unwytpynu$npd punhwupwgnedutbin: Puswbu bwle wnwowpyyt; E
su(1,N | M) nhuwdhy giphwupwhwhuyny oughywwnnph W Ynuynywlh Yepw hwdwywpgbp,
L wwpqyb, np oughiwwnph Ybpw hwdwlwngbph ntwenwd huwpwynp £ Jwnnigby
ntbnpdwgywd A =2M "Anwwllwpbh unwybpuphdbnphqughw, YnunUwuh Ubpw
hwdwlwpgbph nGwencd ny:
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XacmaH 3puk Apmypoesu4

CynepcummeTpuuHble mexaHuku ¢ KanepoBbim ¢pa3oBbiM NPOCTPaHCTBOM

Pe3siome

[OvccepTaumsa nocsAlEeHa (Cynep)MHTErpUpyeMbIM CUCTEMAM KIacCMYECKON MeXaHWKU C
KanepoBbim $»a30BbIM NPOCTPAHCTBOM U NMOCTPOEHMUIO UX CYNEPCUMMETPUYHBIX paclumpeHnid. Kak
6bl710 NoKasaHo B paboTe, WMCrMosb3yemble MeTOAbl MOFYT OKa3aTbCA [AOBOJbHO MO/ME3HbIMU B
cynepcummeTpu3au MM pasanyHbiXx mogenei. ®as3oBbIM MPOCTPAHCTBOM TaKMUX
CynepcMMETPUYHBIX pacmpernin asnsetca Kaneposo cynepmHoroobpaswue, To ecTb, Kaneposo
MHOroobpasme HacblLLeHHOe aHTUKOMMYTATUBHbIMM [POCCMAHHOBBLIMU NEPEMEHHbIMM.

Knaccuueckas cuctema BOMYOK diinepa bbina chopmynmpoBaHa Kak cuctema ¢ Gpa3oBbiM

npoctparcteom CP!, 7o ecTb Kkak ogHomepHas cuctema. [anee 6bina npegnoseHa obuwas
npoueaypa cynepcMmmeTpu3aLmn anpuopu HTETPUPYEMbIX OAHOMEPHbIX CUCTEM, MO3BOAAIOLLANA
nocTpouUTb Lenoe cemeictBo A -CynepcMMMeTpuYHbIX pacwmpeHnit, 3asucawmx ot /2
NPOW3BO/IbHLIX BELeCTBEHHbIX (yHKUMIA. Takum obpasom, Takxe 6blna noctpoeHa J = 2k
-cynepcuMMeTpusaLyma BonuKa ditnepa.

BblfI0 NOKa3aHo, YTO cynepuHTerpupyemble 0606LeHna KOHGOPMHO MeXaHWKM, OCLIMANATOPa 1
Ky/IOHOBOM CUCTEMbI eCTeCTBEHHbIM 06pa3soM MOXHO ONMcaTb C MOMOLLBIO HEKOMMAKTHOro
KOMMIEKCHOTO MPOEKTMBHOIO MPOCTPAHCTBA, UIPaIoLLEro Po/b Ga30BOro MPOCTPAHCTBA.

Bbina noctpoena su(1,N | M) cynepkoHbopMHaa mexaHuKa, chOpMyIMPOBaHHaA Kak cucTema

—N|M
¢ ¢asosbim npoctpaHcteom CP , ABNAOWMMCA HE KOMMAKTHbIM aHANOrOM KOMMAEKCHOro

NPOEeKTUBHOrO cynepnpocTpaHcTea. feHepaTopsl su (1,N | M) cummeTpum 6binn onpeneneHsl Kak

—~N|M
noteHumanbl Kunamira CP . ®a3oBoe NPOCTPaHCTBO 6bIN0 NapaMeTPM30BaHO CMEeLMaNbHbIMU

KOoOpAMHaTamu, NO3BOAAIOWMMK €ro UHTEPNPETUPOBATb KaK MHOTOMEPHbIA aHajor MAOCKOCTU
JlobayeBCKOro, NapamMeTpu3OBaHHOW HUXKHEN NONYNAOCKOCTbio (Mogenb KneliHa). 3atem 6bin
OCyWecTBNeH nepexos K KAHOHMYECKMM NepemMeHHbIM, COOTBETCTBYIOWMM W3BECTHOMY
pa3sgeneHuto Ha "paamanbHyr" u "yrnosyr" yactu B (cynep)koHGopmMHOIN mexaHuKe. CBA3biBan
“yrnoBble” KOOpAMHATbl C NepemeHHbIMW AeWCTBUe-yros, 6bl10 MOKasaHo, YTo MNpeasoXKeHHan
cxema nossonset noctpouts su(1,N |M) cynepkoHbopmHble pacliMpeHMA LIMPOKOro Knacca
CynepuHTerpmMpyembix cuctem. Takxke O6bliM NpepnoxeHbl CcynepKoHGOPMHble paclnpeHus
ocumnnatopa u KynoHoBoi cucTembl € AuHamuueckoi cynepanrebpoin su(1,N |M), n 6bino
MOKa3aHo, 4YTO B CAy4ae OCUMINATOPA MOXHO NOCTpouTb aedpopmuposBaHHyo A =2M
cynepcummeTtputo lyaHKape, B oTinume ot cayyas KynoHa.
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